Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507413

ABSTRACT

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Disease Models, Animal , ELAV-Like Protein 1/metabolism , Liver Neoplasms/pathology , RNA/metabolism , Sumoylation
2.
JHEP Rep ; 6(1): 100918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38192540

ABSTRACT

Background & Aims: Current therapies for the treatment of alcohol-related liver disease (ALD) have proven largely ineffective. Patients relapse and the disease progresses even after liver transplantation. Altered epigenetic mechanisms are characteristic of alcohol metabolism given excessive acetate and NAD depletion and play an important role in liver injury. In this regard, novel therapeutic approaches based on epigenetic modulators are increasingly proposed. MicroRNAs, epigenetic modulators acting at the post-transcriptional level, appear to be promising new targets for the treatment of ALD. Methods: MiR-873-5p levels were measured in 23 liver tissue from Patients with ALD, and GNMT levels during ALD were confirmed using expression databases (transcriptome n = 62, proteome n = 68). High-resolution proteomics and metabolomics in mice following the Gao-binge model were used to investigate miR-873-5p expression in ALD. Hepatocytes exposed to 50 mM alcohol for 12 h were used to study toxicity. The effect of anti-miR-873-5p in the treatment outcomes of ALD was investigated. Results: The analysis of human and preclinical ALD samples revealed increased expression of miR-873-5p in the liver. Interestingly, there was an inverse correlation with NNMT, suggesting a novel mechanism for NAD depletion and aberrant acetylation during ALD progression. High-resolution proteomics and metabolomics identified miR-873-5p as a key regulator of NAD metabolism and SIRT1 deacetylase activity. Anti-miR-873-5p reduced NNMT activity, fuelled the NAD salvage pathway, restored the acetylome, and modulated the levels of NF-κB and FXR, two known SIRT1 substrates, thereby protecting the liver from apoptotic and inflammatory processes, and improving bile acid homeostasis. Conclusions: These data indicate that targeting miR-873-5p, a repressor of GNMT previously associated with NAFLD and acetaminophen-induced liver failure. is a novel and attractive approach to treating alcohol-induced hepatoxicity. Impact and implications: The role of miR-873-5p has not been explicitly examined in the progression of ALD, a pathology with no therapeutic options. In this study, inhibiting miR-873-5p exerted hepatoprotective effects against ALD through rescued SIRT1 activity and consequently restored bile acid homeostasis and attenuated the inflammatory response. Targeting hepatic miR-873-5p may represent a novel therapeutic approach for the treatment of ALD.

3.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37527658

ABSTRACT

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Subject(s)
Liver Neoplasms , S-Adenosylmethionine , Mice , Animals , S-Adenosylmethionine/metabolism , Liver/metabolism , Liver Neoplasms/metabolism , Fasting , Adenosine Triphosphate/metabolism , Methionine Adenosyltransferase/metabolism , Phosphatidylethanolamine N-Methyltransferase/metabolism
4.
Adv Nutr ; 14(4): 739-751, 2023 07.
Article in English | MEDLINE | ID: mdl-37207838

ABSTRACT

Within the organism, the liver is the main organ responsible for metabolic homeostasis and xenobiotic transformation. To maintain an adequate liver weight-to-bodyweight ratio, this organ has an extraordinary regenerative capacity and is able to respond to an acute insult or partial hepatectomy. Maintenance of hepatic homeostasis is crucial for the proper functioning of the liver, and in this context, adequate nutrition with macro- and micronutrient intake is mandatory. Among all known macro-minerals, magnesium has a key role in energy metabolism and in metabolic and signaling pathways that maintain liver function and physiology throughout its life span. In the present review, the cation is reported as a potential key molecule during embryogenesis, liver regeneration, and aging. The exact role of the cation during liver formation and regeneration is not fully understood due to its unclear role in the activation and inhibition of those processes, and further research in a developmental context is needed. As individuals age, they may develop hypomagnesemia, a condition that aggravates the characteristic alterations. Additionally, risk of developing liver pathologies increases with age, and hypomagnesemia may be a contributing factor. Therefore, magnesium loss must be prevented by adequate intake of magnesium-rich foods such as seeds, nuts, spinach, or rice to prevent age-related hepatic alterations and contribute to the maintenance of hepatic homeostasis. Since magnesium-rich sources include a variety of foods, a varied and balanced diet can meet both macronutrient and micronutrient needs.


Subject(s)
Longevity , Magnesium , Humans , Nutritional Status , Liver , Aging
5.
Hepatology ; 78(3): 878-895, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36745935

ABSTRACT

BACKGROUND AND AIMS: Alcohol-associated liver disease (ALD) accounts for 70% of liver-related deaths in Europe, with no effective approved therapies. Although mitochondrial dysfunction is one of the earliest manifestations of alcohol-induced injury, restoring mitochondrial activity remains a problematic strategy due to oxidative stress. Here, we identify methylation-controlled J protein (MCJ) as a mediator for ALD progression and hypothesize that targeting MCJ may help in recovering mitochondrial fitness without collateral oxidative damage. APPROACH AND RESULTS: C57BL/6 mice [wild-type (Wt)] Mcj knockout and Mcj liver-specific silencing (MCJ-LSS) underwent the NIAAA dietary protocol (Lieber-DeCarli diet containing 5% (vol/vol) ethanol for 10 days, plus a single binge ethanol feeding at day 11). To evaluate the impact of a restored mitochondrial activity in ALD, the liver, gut, and pancreas were characterized, focusing on lipid metabolism, glucose homeostasis, intestinal permeability, and microbiota composition. MCJ, a protein acting as an endogenous negative regulator of mitochondrial respiration, is downregulated in the early stages of ALD and increases with the severity of the disease. Whole-body deficiency of MCJ is detrimental during ALD because it exacerbates the systemic effects of alcohol abuse through altered intestinal permeability, increased endotoxemia, and dysregulation of pancreatic function, which overall worsens liver injury. On the other hand, liver-specific Mcj silencing prevents main ALD hallmarks, that is, mitochondrial dysfunction, steatosis, inflammation, and oxidative stress, as it restores the NAD + /NADH ratio and SIRT1 function, hence preventing de novo lipogenesis and improving lipid oxidation. CONCLUSIONS: Improving mitochondrial respiration by liver-specific Mcj silencing might become a novel therapeutic approach for treating ALD.


Subject(s)
Liver Diseases, Alcoholic , Animals , Mice , Mice, Inbred C57BL , Liver Diseases, Alcoholic/metabolism , Liver/metabolism , Ethanol/adverse effects , Mitochondria/metabolism , Molecular Chaperones/metabolism , Mitochondrial Proteins/metabolism
6.
Hepatology ; 77(5): 1654-1669, 2023 05 01.
Article in English | MEDLINE | ID: mdl-35921199

ABSTRACT

BACKGROUND AND AIMS: Recent studies suggest that mitochondrial dysfunction promotes progression to NASH by aggravating the gut-liver status. However, the underlying mechanism remains unclear. Herein, we hypothesized that enhanced mitochondrial activity might reshape a specific microbiota signature that, when transferred to germ-free (GF) mice, could delay NASH progression. APPROACH AND RESULTS: Wild-type and methylation-controlled J protein knockout (MCJ-KO) mice were fed for 6 weeks with either control or a choline-deficient, L-amino acid-defined, high-fat diet (CDA-HFD). One mouse of each group acted as a donor of cecal microbiota to GF mice, who also underwent the CDA-HFD model for 3 weeks. Hepatic injury, intestinal barrier, gut microbiome, and the associated fecal metabolome were then studied. Following 6 weeks of CDA-HFD, the absence of methylation-controlled J protein, an inhibitor of mitochondrial complex I activity, reduced hepatic injury and improved gut-liver axis in an aggressive NASH dietary model. This effect was transferred to GF mice through cecal microbiota transplantation. We suggest that the specific microbiota profile of MCJ-KO, characterized by an increase in the fecal relative abundance of Dorea and Oscillospira genera and a reduction in AF12 , Allboaculum , and [ Ruminococcus ], exerted protective actions through enhancing short-chain fatty acids, nicotinamide adenine dinucleotide (NAD + ) metabolism, and sirtuin activity, subsequently increasing fatty acid oxidation in GF mice. Importantly, we identified Dorea genus as one of the main modulators of this microbiota-dependent protective phenotype. CONCLUSIONS: Overall, we provide evidence for the relevance of mitochondria-microbiota interplay during NASH and that targeting it could be a valuable therapeutic approach.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Gastrointestinal Microbiome/genetics , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Molecular Chaperones/metabolism , Mitochondrial Proteins/metabolism
7.
Nat Commun ; 13(1): 6816, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433951

ABSTRACT

Acetaminophen overdose is one of the leading causes of acute liver failure and liver transplantation in the Western world. Magnesium is essential in several cellular processess. The Cyclin M family is involved in magnesium transport across cell membranes. Herein, we identify that among all magnesium transporters, only Cyclin M4 expression is upregulated in the liver of patients with acetaminophen overdose, with disturbances in magnesium serum levels. In the liver, acetaminophen interferes with the mitochondrial magnesium reservoir via Cyclin M4, affecting ATP production and reactive oxygen species generation, further boosting endoplasmic reticulum stress. Importantly, Cyclin M4 mutant T495I, which impairs magnesium flux, shows no effect. Finally, an accumulation of Cyclin M4 in endoplasmic reticulum is shown under hepatoxicity. Based on our studies in mice, silencing hepatic Cyclin M4 within the window of 6 to 24 h following acetaminophen overdose ingestion may represent a therapeutic target for acetaminophen overdose induced liver injury.


Subject(s)
Acetaminophen , Cation Transport Proteins , Chemical and Drug Induced Liver Injury , Liver Diseases , Magnesium , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/prevention & control , Cyclins/genetics , Cyclins/metabolism , Liver Diseases/blood , Liver Diseases/genetics , Liver Diseases/prevention & control , Magnesium/blood , Magnesium/therapeutic use , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism
8.
Sci Rep ; 12(1): 16935, 2022 10 08.
Article in English | MEDLINE | ID: mdl-36209280

ABSTRACT

A biomaterial made of coir and Multi-Walled Carbon Nanotubes (MWCNTs) is presented which exhibits a relatively high-Temperature Coefficient of Resistance (TCR) and thermal insulation properties. Bolometers usually offer acceptable thermal isolation, electrical resistance, and high TCR. Fibers from agricultural waste materials such as coir has a synergistic effect as thermal insulating material and noise reducer. Based on it, powdered coir pills were used as pilot samples, as well as 2 other samples with different dispersions of MWCNTs, sodium dodecyl benzene sulfonate (SDBS) and polyvinylpyrrolidone (PVP) solution. The 3 kinds of samples were thermo-electrically characterized to determine their bolometric performance. Thermal conductivity of k = 0.045 W/m K was obtained by solving the Fourier's law substituting the data into the equation describing heat flux on the sample around room temperature. Results show that adding different concentrations of MWCNT to powdered coir will lead to films with lower electrical resistance, therefore the thermal conductivity increases while thermal resistance decreases. Finally, the bolometric performance shows a maximum peak with a relatively high TCR of - 40.4% at a temperature of 300.3 K, this synthesized material outperforms by almost 1 order of magnitude larger than commercial materials. Results in this work also indicate that it is possible to tune bolometric parameters of this kind of samples and to use them as thermal insulators in the construction industry, when building roofs and walls.


Subject(s)
Nanotubes, Carbon , Biocompatible Materials , Lignin/analogs & derivatives , Povidone , Receptors, Antigen, T-Cell
9.
Commun Biol ; 5(1): 827, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978143

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a multi-organ damage that includes hepatic dysfunction, which has been observed in over 50% of COVID-19 patients. Liver injury in COVID-19 could be attributed to the cytopathic effects, exacerbated immune responses or treatment-associated drug toxicity. Herein we demonstrate that hepatocytes are susceptible to infection in different models: primary hepatocytes derived from humanized angiotensin-converting enzyme-2 mice (hACE2) and primary human hepatocytes. Pseudotyped viral particles expressing the full-length spike of SARS-CoV-2 and recombinant receptor binding domain (RBD) bind to ACE2 expressed by hepatocytes, promoting metabolic reprogramming towards glycolysis but also impaired mitochondrial activity. Human and hACE2 primary hepatocytes, where steatosis and inflammation were induced by methionine and choline deprivation, are more vulnerable to infection. Inhibition of the renin-angiotensin system increases the susceptibility of primary hepatocytes to infection with pseudotyped viral particles. Metformin, a common therapeutic option for hyperglycemia in type 2 diabetes patients known to partially attenuate fatty liver, reduces the infection of human and hACE2 hepatocytes. In summary, we provide evidence that hepatocytes are amenable to infection with SARS-CoV-2 pseudovirus, and we propose that metformin could be a therapeutic option to attenuate infection by SARS-CoV-2 in patients with fatty liver.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Fatty Liver , Metformin , Animals , Hepatocytes/metabolism , Humans , Metformin/pharmacology , Mice , Peptidyl-Dipeptidase A , SARS-CoV-2
10.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35624761

ABSTRACT

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.

11.
Front Physiol ; 13: 864263, 2022.
Article in English | MEDLINE | ID: mdl-35634148

ABSTRACT

Chronic liver diseases include a broad group of hepatic disorders from different etiologies and with varying degrees of progression and severity. Among them, non-alcoholic fatty (NAFLD) and alcoholic (ALD) liver diseases are the most frequent forms of expression, caused by either metabolic alterations or chronic alcohol consumption. The liver is the main regulator of energy homeostasis and metabolism of potentially toxic compounds in the organism, thus hepatic disorders often promote the release of harmful substances. In this context, there is an existing interconnection between liver and brain, with the well-named brain-liver axis, in which liver pathologies lead to the promotion of neurodegenerative disorders. Alzheimer's (AD) and Parkinson's (PD) diseases are the most relevant neurological disorders worldwide. The present work highlights the relevance of the liver-related promotion of these disorders. Liver-related hyperammonemia has been related to the promotion of perturbations in nervous systems, whereas the production of ketone bodies under certain conditions may protect from developing them. The capacity of the liver of amyloid-ß (Aß) clearance is reduced under liver pathologies, contributing to the development of AD. These perturbations are even aggravated by the pro-inflammatory state that often accompanies liver diseases, leading to the named neuroinflammation. The current nourishment habits, named as Western diet (WD) and alterations in the bile acid (BA) profile, whose homeostasis is controlled by the liver, have been also related to both AD and PD, whereas the supplementation with certain compounds, has been demonstrated to alleviate the pathologies.

12.
Hepatology ; 75(3): 550-566, 2022 03.
Article in English | MEDLINE | ID: mdl-34510498

ABSTRACT

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Subject(s)
Fatty Liver/metabolism , Liver Regeneration/physiology , Macrophage Activation/physiology , Mitochondria/metabolism , Mitochondrial Proteins , Molecular Chaperones , Reperfusion Injury/metabolism , Age Factors , Animals , Disease Models, Animal , Energy Metabolism/physiology , Gene Silencing/physiology , Graft Rejection/prevention & control , Liver/metabolism , Liver Transplantation/methods , Mice , Mice, Knockout , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Reperfusion Injury/prevention & control
13.
Mol Metab ; 53: 101275, 2021 11.
Article in English | MEDLINE | ID: mdl-34153521

ABSTRACT

OBJECTIVE: Neddylation is a druggable and reversible ubiquitin-like post-translational modification upregulated in many diseases, including liver fibrosis, hepatocellular carcinoma, and more recently, non-alcoholic fatty liver disease (NAFLD). Herein, we propose to address the effects of neddylation inhibition and the underlying mechanisms in pre-clinical models of NAFLD. METHODS: Hepatic neddylation measured by immunohistochemical analysis and NEDD8 serum levels measured by ELISA assay were evaluated in NAFLD clinical and pre-clinical samples. The effects of neddylation inhibition by using a pharmacological small inhibitor, MLN4924, or molecular approaches were assessed in isolated mouse hepatocytes and pre-clinical mouse models of diet-induced NAFLD, male adult C57BL/6 mice, and the AlfpCre transgenic mice infected with AAV-DIO-shNedd8. RESULTS: Neddylation inhibition reduced lipid accumulation in oleic acid-stimulated mouse primary hepatocytes and ameliorated liver steatosis, preventing lipid peroxidation and inflammation in the mouse models of diet-induced NAFLD. Under these conditions, increased Deptor levels and the concomitant repression of mTOR signaling were associated with augmented fatty acid oxidation and reduced lipid content. Moreover, Deptor silencing in isolated mouse hepatocytes abolished the anti-steatotic effects mediated by neddylation inhibition. Finally, serum NEDD8 levels correlated with hepatic neddylation during the disease progression in the clinical and pre-clinical models CONCLUSIONS: Overall, the upregulation of Deptor, driven by neddylation inhibition, is proposed as a novel effective target and therapeutic approach to tackle NAFLD.


Subject(s)
Fatty Acids/metabolism , Hepatocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , TOR Serine-Threonine Kinases/metabolism , Adolescent , Adult , Aged , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Non-alcoholic Fatty Liver Disease/chemically induced , Signal Transduction , Young Adult
14.
Cell Death Dis ; 12(6): 555, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34050139

ABSTRACT

Dysregulation of miRNAs is a hallmark of cancer, modulating oncogenes, tumor suppressors, and drug responsiveness. The multi-kinase inhibitor sorafenib is one of the first-line drugs for advanced hepatocellular carcinoma (HCC), although the outcome for treated patients is heterogeneous. The identification of predictive biomarkers and targets of sorafenib efficacy are sorely needed. Thus, selected top upregulated miRNAs from the C19MC cluster were analyzed in different hepatoma cell lines compared to immortalized liver human cells, THLE-2 as control. MiR-518d-5p showed the most consistent upregulation among them. Thus, miR-518d-5p was measured in liver tumor/non-tumor samples of two distinct cohorts of HCC patients (n = 16 and n = 20, respectively). Circulating miR-518d-5p was measured in an independent cohort of HCC patients receiving sorafenib treatment (n = 100), where miR-518d-5p was analyzed in relation to treatment duration and patient's overall survival. In vitro and in vivo studies were performed in human hepatoma BCLC3 and Huh7 cells to analyze the effect of miR-518d-5p inhibition/overexpression during the response to sorafenib. Compared with healthy individuals, miR-518d-5p levels were higher in hepatic and serum samples from HCC patients (n = 16) and in an additional cohort of tumor/non-tumor paired samples (n = 20). MiR-518d-5p, through the inhibition of c-Jun and its mitochondrial target PUMA, desensitized human hepatoma cells and mouse xenograft to sorafenib-induced apoptosis. Finally, serum miR-518d-5p was assessed in 100 patients with HCC of different etiologies and BCLC-stage treated with sorafenib. In BCLC-C patients, higher serum miR-518d-5p at diagnosis was associated with shorter sorafenib treatment duration and survival. Hence, hepatic miR-518d-5p modulates sorafenib resistance in HCC through inhibition of c-Jun/PUMA-induced apoptosis. Circulating miR-518d-5p emerges as a potential lack of response biomarker to sorafenib in BCLC-C HCC patients.


Subject(s)
Liver Neoplasms/genetics , MicroRNAs/antagonists & inhibitors , Mitochondria/metabolism , Animals , Apoptosis , Cell Death , Female , Humans , Liver Neoplasms/pathology , Mice , Mice, Nude
15.
JHEP Rep ; 3(3): 100276, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33997750

ABSTRACT

BACKGROUND & AIMS: Mitochondria are the major organelles for the formation of reactive oxygen species (ROS) in the cell, and mitochondrial dysfunction has been described as a key factor in the pathogenesis of cholestatic liver disease. The methylation-controlled J-protein (MCJ) is a mitochondrial protein that interacts with and represses the function of complex I of the electron transport chain. The relevance of MCJ in the pathology of cholestasis has not yet been explored. METHODS: We studied the relationship between MCJ and cholestasis-induced liver injury in liver biopsies from patients with chronic cholestatic liver diseases, and in livers and primary hepatocytes obtained from WT and MCJ-KO mice. Bile duct ligation (BDL) was used as an animal model of cholestasis, and primary hepatocytes were treated with toxic doses of bile acids. We evaluated the effect of MCJ silencing for the treatment of cholestasis-induced liver injury. RESULTS: Elevated levels of MCJ were detected in the liver tissue of patients with chronic cholestatic liver disease when compared with normal liver tissue. Likewise, in mouse models, the hepatic levels of MCJ were increased. After BDL, MCJ-KO animals showed significantly decreased inflammation and apoptosis. In an in vitro model of bile-acid induced toxicity, we observed that the loss of MCJ protected mouse primary hepatocytes from bile acid-induced mitochondrial ROS overproduction and ATP depletion, enabling higher cell viability. Finally, the in vivo inhibition of the MCJ expression, following BDL, showed reduced liver injury and a mitigation of the main cholestatic characteristics. CONCLUSIONS: We demonstrated that MCJ is involved in the progression of cholestatic liver injury, and our results identified MCJ as a potential therapeutic target to mitigate the liver injury caused by cholestasis. LAY SUMMARY: In this study, we examine the effect of mitochondrial respiratory chain inhibition by MCJ on bile acid-induced liver toxicity. The loss of MCJ protects hepatocytes against apoptosis, mitochondrial ROS overproduction, and ATP depletion as a result of bile acid toxicity. Our results identify MCJ as a potential therapeutic target to mitigate liver injury in cholestatic liver diseases.

17.
J Hepatol ; 75(1): 34-45, 2021 07.
Article in English | MEDLINE | ID: mdl-33571553

ABSTRACT

BACKGROUND & AIMS: Perturbations of intracellular magnesium (Mg2+) homeostasis have implications for cell physiology. The cyclin M family, CNNM, perform key functions in the transport of Mg2+ across cell membranes. Herein, we aimed to elucidate the role of CNNM4 in the development of non-alcoholic steatohepatitis (NASH). METHODS: Serum Mg2+ levels and hepatic CNNM4 expression were characterised in clinical samples. Primary hepatocytes were cultured under methionine and choline deprivation. A 0.1% methionine and choline-deficient diet, or a choline-deficient high-fat diet were used to induce NASH in our in vivo rodent models. Cnnm4 was silenced using siRNA, in vitro with DharmaFECT and in vivo with Invivofectamine® or conjugated to N-acetylgalactosamine. RESULTS: Patients with NASH showed hepatic CNNM4 overexpression and dysregulated Mg2+ levels in the serum. Cnnm4 silencing ameliorated hepatic lipid accumulation, inflammation and fibrosis in the rodent NASH models. Mechanistically, CNNM4 knockdown in hepatocytes induced cellular Mg2+ accumulation, reduced endoplasmic reticulum stress, and increased microsomal triglyceride transfer activity, which promoted hepatic lipid clearance by increasing the secretion of VLDLs. CONCLUSIONS: CNNM4 is overexpressed in patients with NASH and is responsible for dysregulated Mg2+ transport. Hepatic CNNM4 is a promising therapeutic target for the treatment of NASH. LAY SUMMARY: Cyclin M4 (CNNM4) is overexpressed in non-alcoholic steatohepatitis (NASH) and promotes the export of magnesium from the liver. The liver-specific silencing of Cnnm4 ameliorates NASH by reducing endoplasmic reticulum stress and promoting the activity of microsomal triglyceride transfer protein.


Subject(s)
Carrier Proteins/metabolism , Cation Transport Proteins/metabolism , Hepatocytes/metabolism , Magnesium , Non-alcoholic Fatty Liver Disease , Animals , Biological Transport/drug effects , Cells, Cultured , Disease Models, Animal , Drug Discovery , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation , Humans , Magnesium/blood , Magnesium/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
18.
Biomedicines ; 9(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513920

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is characterized by an abnormal hepatic lipid accumulation accompanied by a necro-inflammatory process and a fibrotic response. It comprises from 10% to 30% of cases of patients with non-alcoholic liver disease, which is a global health problem affecting around a quarter of the worldwide population. Nevertheless, the development of NASH is often surrounded by a pathological context with other comorbidities, such as cardiovascular diseases, obesity, insulin resistance or type 2 diabetes mellitus. Dietary imbalances are increasingly recognized as the root cause of these NASH-related comorbidities. In this context, a growing concern exists about whether magnesium consumption in the general population is sufficient. Hypomagnesemia is a hallmark of the aforementioned NASH comorbidities, and deficiencies in magnesium are also widely related to the triggering of complications that aggravate NASH or derived pathologies. Moreover, the supplementation of this cation has proved to reduce mortality from hepatic complications. In the present review, the role of magnesium in NASH and related comorbidities has been characterized, unraveling the relevance of maintaining the homeostasis of this cation for the correct functioning of the organism.

19.
Cancers (Basel) ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008356

ABSTRACT

BACKGROUND: Metabolic-associated fatty liver disease (MAFLD) has risen as one of the leading etiologies for hepatocellular carcinoma (HCC). Oncogenes have been suggested to be responsible for the high risk of MAFLD-related HCC. We analyzed the impact of the proto-oncogene c-MYC in the development of human and murine MAFLD and MAFLD-associated HCC. METHODS: alb-myctg mice were studied at baseline conditions and after administration of Western diet (WD) in comparison to WT littermates. c-MYC expression was analyzed in biopsies of patients with MAFLD and MAFLD-associated HCC by immunohistochemistry. RESULTS: Mild obesity, spontaneous hyperlipidaemia, glucose intolerance and insulin resistance were characteristic of 36-week-old alb-myctg mice. Middle-aged alb-myctg exhibited liver steatosis and increased triglyceride content. Liver injury and inflammation were associated with elevated ALT, an upregulation of ER-stress response and increased ROS production, collagen deposition and compensatory proliferation. At 52 weeks, 20% of transgenic mice developed HCC. WD feeding exacerbated metabolic abnormalities, steatohepatitis, fibrogenesis and tumor prevalence. Therapeutic use of metformin partly attenuated the spontaneous MAFLD phenotype of alb-myctg mice. Importantly, upregulation and nuclear localization of c-MYC were characteristic of patients with MAFLD and MAFLD-related HCC. CONCLUSIONS: A novel function of c-MYC in MAFLD progression was identified opening new avenues for preventative strategies.

20.
Int J Mol Sci ; 21(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261190

ABSTRACT

Liver fibrosis is the excessive accumulation of extracellular matrix proteins that occurs in chronic liver disease. Ubiquitination is a post-translational modification that is crucial for a plethora of physiological processes. Even though the ubiquitin system has been implicated in several human diseases, the role of ubiquitination in liver fibrosis remains poorly understood. Here, multi-omics approaches were used to address this. Untargeted metabolomics showed that carbon tetrachloride (CCl4)-induced liver fibrosis promotes changes in the hepatic metabolome, specifically in glycerophospholipids and sphingolipids. Gene ontology analysis of public deposited gene array-based data and validation in our mouse model showed that the biological process "protein polyubiquitination" is enriched after CCl4-induced liver fibrosis. Finally, by using transgenic mice expressing biotinylated ubiquitin (bioUb mice), the ubiquitinated proteome was isolated and characterized by mass spectrometry in order to unravel the hepatic ubiquitinated proteome fingerprint in CCl4-induced liver fibrosis. Under these conditions, ubiquitination appears to be involved in the regulation of cell death and survival, cell function, lipid metabolism, and DNA repair. Finally, ubiquitination of proliferating cell nuclear antigen (PCNA) is induced during CCl4-induced liver fibrosis and associated with the DNA damage response (DDR). Overall, hepatic ubiquitome profiling can highlight new therapeutic targets for the clinical management of liver fibrosis.


Subject(s)
Genomics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Ubiquitination , Animals , Carbon Tetrachloride , DNA Damage , DNA Repair , Hep G2 Cells , Humans , Liver Cirrhosis/chemically induced , Liver Regeneration , Mice, Inbred C57BL , Proliferating Cell Nuclear Antigen/metabolism , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...